Building Production-Ready AI Chatbots: LLMs, RAG, Vector Databases & Real-Time Streaming

Research Disclaimer This tutorial is based on: OpenAI GPT-4 API (as of January 2025) LangChain v0.1.0+ with langchain-community v0.0.20+ (LLM orchestration framework) Pinecone v3.0+ (vector database with new Serverless API) FastAPI v0.109+ (high-performance Python web framework) Streamlit v1.30+ (rapid UI development) ChromaDB v0.4+ (open-source vector database) Sentence Transformers v2.3+ (embedding models) Rasa v3.6+ (traditional NLP chatbot framework) All implementation patterns follow production best practices for enterprise chatbot deployments. Code examples have been tested with production workloads as of January 2025. Note: Pinecone v3.0 introduced significant API changes moving to a Serverless architecture; all code uses the updated API patterns. ...

March 19, 2025 · 23 min · Scott

Implementing Gemini Text Embeddings for Production Applications

Implementing Gemini Text Embeddings for Production Applications Note: This guide is based on Google Generative AI API documentation, Gemini embedding model specifications (text-embedding-004 released March 2025), and documented RAG (Retrieval-Augmented Generation) patterns. All code examples use the official google-generativeai Python SDK and follow Google Cloud best practices. Text embeddings transform text into dense vector representations that capture semantic meaning, enabling applications like semantic search, document clustering, and Retrieval-Augmented Generation (RAG). Google’s Gemini embedding models, particularly text-embedding-004 released in March 2025, provide state-of-the-art performance with configurable output dimensions and task-specific optimization. ...

March 12, 2025 · 13 min · Scott