A Developer’s Guide to Anthropic’s MCP: Integrating AI Models with Data Sources

Introduction “AI models are only as powerful as the data they access.” Anthropic’s Model Context Protocol (MCP) bridges this gap by standardizing how AI systems connect to structured and unstructured data sources—from cloud storage to enterprise databases. Yet, deploying MCP in production requires careful attention to architecture, security, and performance trade-offs. This guide walks through: MCP’s client-server architecture and how it differs from traditional API-based integrations. Step-by-step implementation with Azure Blob Storage (adaptable to PostgreSQL, GitHub, etc.). Security hardening for enterprise deployments (RBAC, encryption, auditing). Performance tuning for large-scale datasets (caching, batching, monitoring). Scope: This is a technical deep dive—assumes familiarity with REST/GraphQL and Python. ...

May 21, 2025 · 3 min · Scott